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Abstract Populations of four perennia herbaceous spe-
cies that were genetically modified for altered lignin
content (or associated forage digestibility) by conven-
tional plant breeding were evaluated for two agricultural
fitness traits, plant survival and plant biomass, in three
Northcentral USA environments for more than 4 years.
Reduced lignin concentration or increased digestibility
resulted in increased winter mortality in two of four spe-
cies and reduced biomass in one species. Results from
other experiment indicate that these apparent genetic
correlations may be ephemeral, suggesting that selection
for fitness can be successful within high-digestibility or
low-lignin germplasm. Results indicate that perennial
plants genetically engineered with altered lignin concen-
tration or composition for use in livestock, pulp and pa-
per, or bioenergy production should be evaluated for fit-
ness in field environments prior to use in agriculture.
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Introduction

After cellulose, lignin is the second most-abundant natu-
ral polymer on earth. Lignin is present in all terrestrial
higher plants including herbaceous perennials. It is in-
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volved in structural support, anti-herbivory, and wound
response. Commercia utilization of numerous plant
products is severely hampered by lignin, including the
production of paper from pulpwood which must be
chemically de-lignified. Lignification of herbaceous
crops limits the amount of digestible energy available to
livestock, resulting in incomplete utilization of cellulose
and hemicellulose by ruminant animals. Genetic reduc-
tions in the lignin concentration of forages can increase
the availability of energy from cell-wall polysaccharides,
improving the efficiency of livestock production (Casler
and Vogel 1999).

Lignin is synthesized from monolignols produced in
the shikimic acid pathway (Sewalt et al. 1997; Osakabe
et al. 1999). Recent research with transgenic plants has
demonstrated that lignin is a highly plastic compound,
synthesized by a metabolic grid that results in a wide ar-
ray of biochemical phenotypes (Boudet and Grima-
Pettenati 1996; Ralph et al. 1997; Jung and Ni 1998;
Ralph et al. 1998). This metabolic grid results in consid-
erable flexibility and plasticity to the lignification pro-
cess, due to numerous potential sites at which genetic
modification may occur, either naturaly or with trans-
genes (Leeet a. 1997; Piquemal et al. 1998).

Antisense transgene constructs are available, or are
rapidly being developed, for al enzymesin the phenylpro-
panoid pathway (Lee et a. 1997; Sewalt et al. 1997) and
are being utilized to determine their effect on plant lignin
concentration and composition. In transgenic tobacco
(Nicotiana tabacum L..) some abnormal growth and devel-
opment has occurred when transgenic plants exhibited sig-
nificant reductions in lignin content (Lee et al. 1997; Jung
and Ni 1998). However, both the lignin composition and
content of some Arabidopsis (Arabidopsis thaliana
Heynh.) and tobacco anti-sense lines (Lee et a. 1997;
Jung and Ni 1998; Piquema et a. 1998; Ralph et a.
1998), and the lignin content of aspen, Populus tremulo-
ides Michx. (Hu et a. 1999), were significantly changed
without apparent adverse effects on transgenic plants.

Much of the genetic variation that has been generated
in typical novel-lignin transgenic plantsis parallel to that
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observed in natural populations of non-transgenic plants
including variation in lignin concentration and composi-
tion. Many novel-lignin transgenic events appear to
mimic natural genetic polymorphisms, including the
brown-midrib mutants of maize (Zea mays L.) and other
annual cereals (Cherney et a. 1991; Boudet and Grima-
Pettenati 1996; Lee et al. 1997; Sewalt et al. 1997,
Piguemal et al. 1998; Casler and Jung 1999) and quanti-
tative trait loci in natural populations (Casler and Jung
1999). Phenotypic changes in transgenic plants, includ-
ing changes in lignin concentration and composition and
the reddish-brown coloration of some low-lignin plants,
are both qualitatively and quantitatively similar to natu-
ral variation for these traits (Casler 2000). Furthermore,
the relative increases observed in in vitro digestibility
are similar regardless of whether lignin is modified by
conventional selection, mutagenesis, or transformation
(Casler 2000). Indeed, transgene technology has shown
that two of the brown-midrib mutants of maize, which
typically reduce lignin concentration by 10 to 20% and
give a reddish-brown color to lignified tissue, represent
lesions to key enzymes in the phenylpropanoid pathway
(Vignolset al. 1995; Halpin et al. 1998).

Genetic modifications to lignin concentration and/or
composition would be economically important in many
woody or herbaceous perennials. However, the brown-
midrib genes of annual cereals uniformly reduce agricul-
tural fitness by reducing both grain and biomass yield
(Barriére and Argillier 1993; Barriére et a. 1988). The
purpose of the present research was to test the hypothesis
that a genetic relationship exists between lignin concen-
tration (or digestibility) and agricultural fitness of peren-
nial herbaceous plants by using populations of plants
from four herbaceous perennial species divergently se-
lected for lignin concentration or in vitro dry matter di-
gestibility (IVDMD). Because of the parallel nature of
phenotypic variation between novel-transgenics and nat-
ural mutations influencing lignin, this work should serve
as amodel for novel-lignin transgenic research.

Materials and methods

Divergent selection for IVDMD was practiced in 179-OGP-DT or-
chardgrass, Dactylis glomerata L. (Rind and Carlson 1988; Rind
Baloch 1989); WB8 smooth bromegrass, Bromus inermis Leyss.
(Ehlke et al. 1986); and ‘Pathfinder’ switchgrass, Panicum vir-
gatum L. (Hopkins et al. 1995a). Divergent selection for acid-de-
tergent lignin concentration was conducted in ‘ Saranac-AR’ alfal-
fa, Medicago sativa L. (Kephart et a. 1990). One cycle of pheno-
typic selection, with intercrossing, was practiced in each direction
for each species. Two additional cycles of selection were conduct-
ed for high IVDMD in switchgrass (C+2 and C+3). All base popu-
lations will be referred to as CO, and cycle-1 populations as C-1
(low IVDMD or high lignin) or C+1 (high IVDMD or low lignin).

Seedlings of al populations (except for CO afalfa and C+2
switchgrass for which seed was unavailable) were established in a
glasshouse in February 1992 and transplanted to field plotsin May
1992. Field sites and soil types were: Ames, lowa [Nicollet loam
(fine-loamy, mixed, mesic Aquic Hapludolls)]; Mead, Neb.
[Sharpsburg silt loam (fine, montmorillonitic, mesic Typic Argiu-
dolls)]; and Arlington, Wis. [Plano silt loam (fine-silty, mixed,
mesic Typic Argiudolls)]. The experimental design for each spe-

cies was a randomized complete block with four replicates. Each
plot contained 60 plants of one population with plants spaced 1.2-
m apart (switchgrass), 0.9-m apart (smooth bromegrass), or 0.6-m
apart (orchardgrass and alfalfa).

Plants were harvested two (switchgrass and smooth brome-
grass) or three (afalfa and orchardgrass) times per year in
1993-95. Alfalfa and orchardgrass harvests occurred in May, July,
and September. Smooth bromegrass harvests occurred in June and
October. Switchgrass harvests occurred in July and October.
Smooth bromegrass, orchardgrass, and switchgrass plots were fer-
tilized with 80 kg of N hal at the beginning of each growth cycle.
All plots were fertilized with P and K as suggested by soil-test re-
sults. Weeds were controlled for the duration of the experiment by
pre-emergence herbicide applications in early spring (as described
by Falkner and Casler 1998), rototilling, and hand weeding.

Biomass was determined in 1993 and 1994 by harvesting all
herbage above a 9-cm height; adjustment to a dry matter basis was
made using dried 500-g herbage samples. Survival percentage of
each plot was determined by scoring plants as being alive or dead
in early spring, mid-summer, and late autumn, beginning in mid-
summer 1992 and ending in May or June 1996.

Season total biomass and plant survival at each date were ana-
lyzed by separate analyses of variance for each species. Years, lo-
cations, and blocks were assumed to have random effects and cy-
cles were fixed. Linear contrasts within the analyses of variance
were used to determine correlated responses of agricultural fitness
traits (biomass and survival) to selection for lignin or IVDMD.

Results and discussion

Previous studies have demonstrated that divergent selec-
tion for IVDMD or lignin concentration was successful
in all four species, summarized in Fig. 1. In smooth
bromegrass and switchgrass, selection for IVDMD was
associated with an opposite response in lignin concentra-
tion (—7.1 and -5.9, respectively, unit change in IVDMD
for each unit change in lignin). In afalfa, selection for
lignin concentration was associated with an opposite re-
sponse in IVDMD (0.9 unit change in IVDMD for each
unit change in lignin). Selection responses for lignin and
IVDMD were consistent across multiple environments
for all four species, indicating that these genetic changes
were highly stable and repeatable. Although lignin data
for orchardgrass were unavailable, the negative relation-
ship between lignin concentration and IVDMD appears
to transcend morphological, physiological, and taxonom-
ic boundaries. Nevertheless, lignin had a greater effect
on IVDMD for both grass species than for alfalfa

Most alfalfa plants died during the 49-month duration
of the experiment (Fig. 2). Mortality rates varied among
locations, but the end result was similar for all three lo-
cations: with less than 10% survival after 49 months.
Approximately 81% of alfalfa mortality occurred during
the winter months; most of the non-winter mortality oc-
curred at lowain 1993, months 12 to 17, and at Wiscon-
sin in 1994, months 24 to 28. Thus, winter stress factors
(extended freezing temperatures, reduced light from ex-
tended snow cover, ice sheet formation, dessication, and
freeze/thaw cycles) were either the primary determinants
or the fina contributing factor for most afalfa plant
mortality. There was relatively little mortality of or-
chardgrass and smooth bromegrass, with 10 and 4%
losses overall. Most of the orchardgrass mortality oc-
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Fig. 1 Phenotypes of populations selected for divergent levels of
in vitro dry matter digestibility (IVDMD) or lignin concentration,
expressed as a proportion of the cell wall, CW (Casler and Jung
1999). Each cycle of selection represents identification of parents
with either high IVDMD (+1), low IVDMD (-1), low lignin (+1),
or high lignin (-1), followed by intercrossing and evaluation of
progeny. Cycle 0 represents the original population. All responses
were significant at P<0.05. Alfalfa data are means across three en-
vironments (Kephart et al 1990), smooth bromegrass data are
means across four environments (Casler and Ehlke 1986; Ehlke et
al 1986; Casler and Carpenter 1989), orchardgrass data are means
across five environments (Rind and Carlson 1988; Rind Baloch
1989), and switchgrass data are means across eight environments
(Hopkins et al 19953, b). Lignin data were not available for the or-
chardgrass populations. The cycle 2 high-IlVDMD switchgrass se-
lection and the CO afalfa population were not available for evalu-
ation.

curred during the first winter. Apparent increases in sur-
vival of smooth bromegrass after 13 months at Nebraska
were due to rototilling; smooth bromegrass rhizomes
from highly rhizomatous plants were inadvertently
chopped and transplanted by rototilling along the edge of
spaces left by dead plants. Mortality of switchgrass pro-
ceeded slowly until winter 1995/96 when significant
mortality occurred at Nebraska and Wisconsin. All
switchgrass mortality occurred during the winter months.

The two species with the most-extreme survival per-
centages, alfalfa and smooth bromegrass, showed no evi-
dence of differences among selected populations, for ei-
ther biomass or plant survival. Thus, in these two spe-
cies, there was no evidence for a genetic relationship be-
tween lignin concentration and agronomic fitness, de-
spite the two species inherent differences in plant sur-
vival (Fig. 2).

The high-lignin vs low-lignin alfalfa populations had
previously shown a mean survival of 64 vs 34%, respec-
tively, after 2 years in the field at Ames, lowa (Buxton
and Casler 1993). The high-lignin and low-lignin afafa
populations grown in our experiment represented the
progeny of survivors from the respective populations in
the Ames, lowa experiment (Buxton and Casler 1993).
Thus, selection for survival following severe winter con-
ditions, using traditional plant breeding procedures,
eliminated this observed difference in plant survival be-
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Fig. 2 Survival of transplants during 49 months at three locations.
Data points represent means across four replicates and two to four
populations per species. Least significant differences for compari-
sons among dates within locations are: 5.6% for alfalfa, 2.2% for
orchardgrass, 2.7% for smooth bromegrass, and 3.7% for switch-
grass

tween high-lignin and low-lignin afalfa populations. We
do not know if lignin concentration was altered by selec-
tion for survival, reflecting a genetic correlation between
lignin and plant survival, or if lignin remained constant,
reflecting more-or-less random segregation of loci con-
trolling these two traits.

Unlike alfalfa, smooth bromegrass is remarkably tol-
erant of the environmental stresses that occur in this geo-
graphic region, persisting indefinitely under most condi-
tions. This high level of inherent stress tolerance appears
to be conditioned by factors unrelated to lignification.
Furthermore, there appeared to be little or no genetic
variation in this smooth bromegrass population for toler-
ance to the stresses present during this experiment. The
results for smooth bromegrass agree with previous re-
sults (Casler and Ehlke 1986).

Analyses of variance for orchardgrass revealed signif-
icant (P<0.05) linear responses of plant survival mea-
sured at three dates. Sept. 1992, Oct. 1993, and May
1996. These responses were consistent across locations,
as indicated by non-significant cyclexlocation interac-
tions for al dates. Biomass did not differ among or-
chardgrass selections. Analyses of variance for switch-
grass revedled highly significant (P<0.01) linear re-
sponses of plant survival for al dates beginning June
1993. These responses were consistent across locations,
as indicated by non-significant cyclexlocation interac-
tions for all dates. Biomass differed among switchgrass
selections (P<0.01) and these differences were consistent
across both locations and years.

For orchardgrass, a relationship between plant surviv-
a and divergent selection for IVDMD was observed as
early as autumn of the year of transplanting, despite an
average of only 1.5% mortality during summer 1992
(Fig. 3). This relationship became stronger with time,
with the effect doubling by autumn 1993 and doubling
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Fig. 3 Agronomic fitness of divergent-IVDMD orchardgrass se-
lections approximately 4, 17, and 48 months after transplanting.
Each cycle of selection represents identification of parents with ei-
ther high (+1) or low (-1) IVDMD, followed by intercrossing and
evaluation of progeny. Cycle 0 represents the original population.
Each data point represents a mean across four replicates and three
locations. Regressions had R?=1.00, 0.85 and 1.00, and P=0.04,
0.05 and <0.01, for Sept. 1992, Oct. 1993, and May 1996, respec-
tively

again by the conclusion of the experiment in spring
1996. The minimum plant survival of high-IVDMD or-
chardgrass was 87% (Fig. 3). Such a small difference
may have little practical significance for sward plots
where plants are able to compete against each other and
those with the greatest fitness will survive. However, if
these data reveal a true genetic relationship between V-
DMD and plant survival, then natural selection for sur-
vival in swards will reduce the fitness of high-IVDMD
plants, gradually reducing the digestibility of an orchard-
grass-dominated sward. A similar phenomenon has been
observed in smooth bromegrass, for which plants that
survived 9-years of intensive grazing were less palatable
than their origina (unselected) siblings (Falkner and
Casler 2000). Furthermore, the progression of the linear
relationship of plant survival on cycle number (Fig. 3)
suggests that the high-VDMD orchardgrass population
will continue to suffer greater mortality as plants age,
until al survivors have a fithess level necessary to sur-
vive the local environment. It is currently impossible to
predict the survival level at this threshold or if such a
threshold exists. In environments where such a threshold
does not exist, these data suggest that the high-IVDMD
orchardgrass population will eventually reach 100%
mortality more rapidly than the base population or the
low-1VDMD population.

In switchgrass, a relationship between plant survival
and divergent selection for IVDMD was observed begin-
ning in June 1993 (Fig. 4). As with the orchardgrass
populations, the mortality response to selection doubled
in the next year and doubled again by the conclusion of
the experiment. All switchgrass mortality occurred dur-
ing winter months. Above-ground biomass of switch-
grass also declined due to selection for increased V-
DMD (Fig. 4). Because biomass was computed only for
living plants and adjusted to a per-plant mean, responses
in biomass were not due to responses in plant survival
per se. Selection for increased IVDMD in switchgrass
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Fig. 4 Agronomic fitness of divergent-IlVDMD switchgrass selec-
tions, measured as survival approximately 12, 24, 36 and
48 months after transplanting, or 2-year mean biomass. Each cycle
of selection represents identification of parents with either high or
low IVDMD, followed by intercrossing and evaluation of progeny.
Cycle 0 represents the original population. Each data point repre-
sents a mean across four replicates and three locations. Plant-sur-
vival regressions had R2=0.94, 0.75, 0.64 and 0.94 for June 1993,
1994, 1995 and 1996, respectively. All linear responses had
P<0.01

apparently decreased both cold tolerance and growth rate
(ahility to accumulate biomassin a given time period).

Genetic differences in winter mortality of the high-
and low-lignin alfalfa populations in a previous experi-
ment and the high- vs low-IVDMD orchardgrass and
switchgrass populations in this experiment are indicative
of genetic correlations of lignin or IVDMD with traits
affecting winter survival. These genetic correlations are
most likely due to two phenomena: (1) linkage between
genes controlling lignin synthesis and genes controlling
winter survival traits, (2) pleiotropic effects of individual
genes, or (3) a combination of both. Because genes that
are closely linked require many generations of random
mating to reach linkage equilibrium, it is often impossi-
ble to conclusively distinguish between linkage and plei-
otropy. Abnormal growth including a weakened vascular
systems in transgenic plants with modified lignin con-
centration (Lee et al. 1997; Jung and Ni 1998) and the
reduced biomass yield of brown-midrib mutants of cere-
als (Cherney et a. 1991; Barriere and Argillier 1993;
Jung and Deetz 1993) argue that pleiotropic effects may
be involved in other fitness reductions associated with
reduced lignin concentration. Because winter survival
and lignin synthesis are both affected by an array of
genes, it is likely that both pleiotropy and linkage are in-
volved in the observed negative relationships between
winter survival and lignin concentration.

In a recently completed study, co-author Vogel (un-
published data, 2000) has demonstrated significant ge-



netic variation in the high IVDMD cycle-3 switchgrass
population (C+3) for both winter survival and IVDMD,
and a non-significant phenotypic correlation between
these two traits. This suggests that the relationship be-
tween winter survival and lignin or IVDMD is not abso-
lute and can be genetically moderated by selection and
recombination. The results of this study, however, clear-
ly demonstrate that genetic modification of perennial
plants for reduced lignin, using either conventional
breeding procedures or plant transformation, can have
significant and immediate negative effects on agricultur-
al fitness. Plants genetically modified for reduced lignin
must be evaluated for fitness in multiple environments
that include an array of physiological stress factors. Se-
lection among novel-lignin transgenics and their proge-
nies may be required to ensure adequate agricultural fit-
ness. Recurrent selection strategies for increased V-
DMD or reduced lignin should include field testing of
plants to ensure that fitness is retained throughout the se-
lection process.
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